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With a recently developed unique deep ultraviolet picoseconds time-resolved photoluminescence
(PL) spectroscopy system and improved growth technique, we are able to determine the detailed
band structure near tHepoint of wurtzite(WZz) AIN with a direct band gap of 6.12 eV. Combined

with first-principles band structure calculations we show that the fundamental optical properties of
AIN differ drastically from that of GaN and other WZ semiconductors. The discrepancy in energy
band gap values of AIN obtained previously by different methods is explained in terms of the optical
selection rules in AIN and is confirmed by measurement of the polarization dependence of the
excitonic PL spectra. €003 American Institute of Physic§DOI: 10.1063/1.1633965

AIN, with a direct band gap exceeding 6 eV, is emergingcan be achievetlIn this letter, we report the properties of
as an important semiconducfor AIN and Al-rich AlGaN  the fundamental optical transitions in AIN probed by photo-
alloys, covering wavelengths from 300 to 200 nm, are idealuminescencéPL) spectroscopy measurements. By compar-
materials for the development of chip-scale UV light ing the experimental results with first-principles calculations,
sources/sensors. Efficient UV light sources/sensors are crive are able to provide a coherent picture for the band struc-
cial in many fields of research. Protein fluorescence is gerfure parameters of wurtzite AIN near tivepoint. The results
erally excited by UV light; monitoring changes of intrinsic reveal significant differences between AIN and GaN in their
fluorescence in a protein can provide important informatiorPand structure parameters, and hence, their fundamental op-
on its structural changésUV light sources combined with tical properties. Our results explained the puzzling discrep-
fluorescent phosphors are also important in current pursuit cdncy in energy band gap values of AIN obtained previously
producing solid-state white light emitting devices. by different methods3?

Besides important practical applications, AIN is also a  The lum-thick AIN films were grown by metalorganic
unique semiconductor compound for fundamental studies. 1§hemical vapor deposition on sapphi@®01) substrates with
contrast to all the other 1I-VI and IlI-V binary semiconduc- 10W temperature AIN nucleation layers. Trimethylaluminum
tors, AIN in the zinc-blende structure has a larger band ga@"d NF; were used as Al and N sources, respectively. The
than that in the wurtzitéWz) structure® AIN is also the only ~ deep-UV laser spectroscopy system used for PL studies con-
WZ semiconductor compound that has been predicted t§ists of_afrequency qguadrupled 100 fs Tl:sapph|_re laser with
have a negative crystal field splitting at the top of valence?! €xcitation photon energy set around 6.28 (eth a 76
band”® Confirmation of these predictions are important be-MHZ repetition rate ath a 3 mWaverage power a 1.3 m

cause the negative crystal field splitting can lead to unusudl'onochromator, and a streak cameZaps time resolution

optical properties of AIN than other wurtzite semiconductorsv",ith a detection ca_pability ranging from 185 to 800 ffn.
Figure 1 shows typical temperature dependent band edge PL

such as GaN. emission spectra for AIN. At 10 K, two emission lines at
Our knowledge concerning the band structure and opti- ) ! )
g 9 b 6.033 and 6.017 eV are resolved. Based on time-resbived

cal properties of AIN is very limited. For example, the de- _ o
tailed band structure parameters nearTtheoint of AIN are and temperature dependent PL studies, as well as their light
olarization dependenc@liscussed latgr these emissions

till unclear. Th n Wi termined in th t onl . . ; .

st unciea € b_a d gap was d_e ©! ed € pasto .gre attributed to the freA-exciton (FX) and its associated

by optical absorption and transmission measurements wit ; % .
neutral donor boundl§) exciton transitions, respectively. As

energy values scattered around 6.3 eV at liquid he"un}he temperature increases, the relative intensity of thean-

O . .
temperature&’ The band structure parameters, including thesition peak at 6.017 eV decreases, while that offbetran-

effective masses of electrons and holes as well as the Chari'tion at 6.033 eV increases, which resembles the behavior of

acter and splitting at the valence band edge are not yet weﬁz andF X seen in GaN* This is expected because the donor

11 ; - ; ;
Endzrstos d q Fur;damgtntql otpt|ca! t'.[ransﬁonS mc!us ing the ﬁound excitons dissociate at higher temperatureshit@and
and-to-band and excitonic transitions have not been wefl 1o qonor®, (DOX—FX+DO).

investigated. It is, therefore, of fundamental and technologi- Figure 2 shows the Arrhenius plot of the PL intensity of

cal importance to fill in the unknowns for AIN. the FX transition line at 6.033 eV. The solid line in Fig. 2 is

Recently, progress have been made for the growth ofq jeast squares fit of the measured data to(Ex.which
AIN epilayers.~ It has been demonstrated that AIN epilay-

! ; . = describes the thermal dissociati¢activation of free exci-
ers with high optical qualities comparable to those of GaN,j,o

dElectronic mail: jiang@phys.ksu.edu lemi(T)=1o[1+ Cel~Eo/kD]~1, (D)
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FIG. 3. Calculated band structure of wurtzite AIN near th@oint. At k
: . =0, the top of the valence band is split by crystal field and spin orbit
fween 10 and 300 K. An aditonal weak emission ine mndicated acCOUPng N0 thel',u(A), I',(E), and T, (C) siates. The sigr. ()
hve,2LO that becomes visible at room temperature is due to the RamaﬁienOteS the dlrectlon' perpgn(.ilcu[@aralleb' to thec axis of the AN epil-
scattering of the excitation laser line with two longitudinal optical phonons 2Y€r- TheA band exciton binding energy is denotedEgs.
(2LO).

GaN) and a much largeu paramete(0.3819 vs 0.3768 for
wherel .n/(T) andl, are, respectively, the PL intensities at a GaN). Here,u is a dimensionless cell-internal coordinate that
finite temperaturd and 0 K, whileE, is the activation en- distinct the two nearest-neighbor anion-cation bond lengths
ergy, i.e., the free exciton binding enerds,, in AIN. A in WZ structure. For an ideal WZ structure witt/a
binding energy ofE,=80 meV is obtained from the fitting, =sqrt(8/3) andu=0.375 the two bond lengths are equal.
which agrees with the value determined from the temperaNeglecting this effect in calculations can lead to large
ture dependence of tHeX decay lifetime!® The energy gap errors’ This larger structural distortion in AIN also explains
at 10 K is thus 6.033 e¥0.080 e\=6.11 (=0.01) eV. This why WZ AIN has a smaller band gap than ZB AIN, whereas
value is consistent with the value derived from anotherfor all the other binary semiconductors the opposite trend
experimertt and a recent theoretical predictidn. exists?®

To gain the insights of the detailed band structure param- There are many important consequences of this large
eters near thd" point, we have performed first-principles negativeA ¢ in AIN. First, the order of the valence bands in
band structure calculations for WZ AIN at the experimentalAIN is different from that of GaN. The valence bands, given
lattice constants. We use the local density approximation am increasing order of their transition energies, Brg,(A),
implemented by the all-electron, relativistiwjenzk code®®  T'g (B), I';,(C) for AIN, whereas in GaN the order is
The calculated band structure together with the measurelg, . I'7,, I'7,.° Because of the large energy separation
band gap and exciton binding energy are shown in Fig. 3between the valence band maximum and the second and
Comparing with the band structure of GaNhe most sig-  third valence stateFig. 3), fundamental optical transitions
nificant difference is the negative crystal-field splittidgr ~ near thel’ point, as well as the transport properties of the
(—=219meV) in AIN instead of a positive value free holes in AIN, are predominantly determined by the top
(+38 meV) in GaN. We find that this is because AIN, beingI';,, band instead of the toPg,,, band in GaN. Second,
more ionic, has a much smallefa ratio (1.601 vs 1.626 for the optical properties of AIN differ significantly from GaN.

Table | lists the calculated square of the dipole transition

0.5 ————— matrix elementsl =|{,|p|¥)|? between the conduction
state and the three valence state$ af WZ AIN for lights
olarized paralle{ll) and perpendiculafL) to thec axis. For
O'OW - . . ' )
an arbitrary light polarization, the matrix elemen(#)
=co¢ 6 1(Elc)+sir? #1(ELc), whereE denotes the electric
—  -0.51 . . .
£ field component of the light andis the angle betweel and
= the c axes. Our results show that the recombination between
- -0 Mllgmifo] = -in[1+Ce €] | the conduction band electrons and the holes in the top most
Eo = 80 meV
-1.51 u ] TABLE |. Calculated square of the dipole transition matrix eleménts
a.u) of WZ AIN for light polarized parallell) and perpendiculatlL) to the
C axis.
20005 0006 0009 0012
’ ’ ) : 0.015 Transition I(Ellc) I(ELc)
1/T(1/K)
I7c=T700m 0.4580 0.0004
FIG. 2. The Arrhenius plot of PL intensifyn(l.,) vs 1/T] for AIN epilayer. I';c—T, 0 0.2315
The solid line is the least squares fit of data to F, from which a free =Ty, 0.0007 0.2310

exciton binding energy of 80 meV is obtained.
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4 - i T T 4(a), the transition between tH&;. and the top valence band
T=10K (a) I'7,6m,» Which determines the minimum energy gap of AIN,
6.033 eV is not active forEL c. Therefore, this type of optical mea-
- 3 . T"’” e ] surement cannot obtain the true fundamental band gap of
= Elle~2 | ; AIN. Instead, it measures the energy gap between the con-
s ] if,“i ol }f;‘.' | duction band and th& (or C) valence band because these
ki HES ! transitions are active fow polarization. This explains why
- / .:A';T’*’”iﬁ? T larger band gaps, about 6.3 eV, were reported in earlier
1 Pt Ty o measurement®, whereas the value of 6.110.01 eV is ob-
Eic R B frv tained here by PL. This is in contrast to the case for GaN
ZP‘ x! epilayers, in which the emission to the top most valence band

is allowed fora polarization®’ Thus, different optical mea-
surements would generally yield the same band gap value in
Energy (eV) GaN?°
A AR AR AL R AR A To further confirm the earlier interpretation, we have cal-
(b) culated the absorption coefficients for AIN with two different
light polarization directionsE L ¢ andEllc. The results are
shown in Fig. 4b), which clearly show that optical measure-
ments with polarization orientation &L c, would reveal an
apparent energy gap &,+A,g~6.3 eV that is about 0.2
eV larger than the minimum energy gap.
In summary, fundamental optical transitions and band
parameters of AIN near thE point have been investigated
by deep UV PL measurements together with first-principles
S PP RS B band structure and absorption spectrum calculations. The re-
Energy (eV) sults have revealed significant differences in the band struc-
tures between AIN and other binary WZ semiconductors. The
FIG. 4. (a) Measured polarization dependence of thexciton emission  origin of the puzzling band gap differences in AIN obtained
spectra of AIN. The inset shows the selection rules for the optical transition%y various measurements is explained through the optical

atI" in AIN. (b) Calculated absorption coefficie and o of AIN for . .. ;
light polarizaiignac andele P e ” selection rules for near band edge transitions in AIN.
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